

Chapter 1: Quadratic forms

Exercise 2. Among the following functions, determine which ones are quadratic forms. Give their polarization.

1. $q_1: \mathbb{C} \longrightarrow \mathbb{C}$ given by $q_1(z) := iz^2, \quad z \in \mathbb{C}.$ 2. $q_2: \mathbb{C}^2 \longrightarrow \mathbb{C}$ given by $q_2(z, w) := zw, \quad (z, w) \in \mathbb{C}^2.$ 3. $q_3: \mathbb{C}^2 \longrightarrow \mathbb{C}$ given by $q_3(z, w) := z\bar{w}, \quad (z, w) \in \mathbb{C}^2.$

Solution of exercise 2.

- 1. For $\lambda \in \mathbb{C}$ and $z \in \mathbb{C}$, $q_1(\lambda z) = i(\lambda z)^2 = \lambda^2 i z^2 = \lambda^2 q(z)$. $\varphi_{q_1}(u, v) = \frac{1}{2}(i(u+v)^2 iu^2 iv^2) = iuv$ is symmetric and bilinear. Thus q_1 is a quadratic form.
- 2. For $\lambda \in \mathbb{C}$ and $(z, w) \in \mathbb{C}^2$, $q_2(\lambda(z, w)) = \lambda^2 zw = \lambda^2 q_2((z, w))$. For *z*1 $\overline{\mathcal{C}}$ *w*¹ $\overline{}$ $\begin{array}{c} \end{array}$ *, z*2 $\overline{\mathcal{C}}$ *w*² λ $\begin{matrix} \end{matrix}$ $\in \mathbb{C}^2$, φ_{q_2} ($\int z_1$ $\overline{\mathcal{C}}$ *w*¹ λ $\begin{matrix} \end{matrix}$ *, z*2 $\overline{\mathcal{C}}$ *w*² λ \int) = 1 $\frac{1}{2}((z_1 + z_2)(w_1 + w_2) - z_1w_1 - z_2w_2) = \frac{1}{2}(z_1w_2 + z_2w_1)$ is symmetric and bilinear. Thus *q*₂ is a quadratic form.

3. For $\lambda \in \mathbb{C}$ and $(z, w) \in \mathbb{C}^2$, $q_3(\lambda(z, w)) = |\lambda|^2 z \bar{w} = |\lambda|^2 q_3((z, w))$. q_3 is not a quadratic form.

 \Box

 \Box

Exercise 9. Let *E* be a finite dimensional K-vector space, let $q : E \longrightarrow \mathbb{K}$ be a nondegenerate quadratic form and let $h \in \mathscr{L}(E)$.

- 1. Show that $q \circ h$ is a quadratic form on E ,
- 2. In which case the quadratic form *q* ∘ *h* is non-degenerate ?

Solution of exercise 9.

- 1. For $\lambda \in \mathbb{K}$ and $v \in E$, $q \circ h(\lambda v) = q \circ (\lambda h(v)) = \lambda^2 q \circ h(v)$. For $u, v \in E$, $\varphi_{q \circ h}(u, v) = \frac{1}{2}(q \circ h(u + v) q \circ h(u) \frac{1}{2}(q \circ h(u + v) q \circ h(u))$ *q* ◦ *h*(*v*)) = $\varphi_q(h(u), h(v))$. $\varphi_{q \circ h}(-, -) = \varphi_q(h(-), h(-))$ is bilinear and symmetric.
- 2. (*c.f.* Proposition 1.26) By Proposition 1.31., $q \circ h$ is non-degenerate if and only if det $(\mathcal{M}_{\mathscr{B}}(\varphi_{q \circ h}))$ = $\det({}^t{\mathscr M}_{\mathscr B}(h){\mathscr M}_{\mathscr B}(\varphi_q){\mathscr M}_{\mathscr B}(h)) = \det({\mathscr M}_{\mathscr B}(h))^2 \det({\mathscr M}_{\mathscr B}(\varphi_q)) \neq 0.$ This is equivalent to $h\in\mathrm{GL}(E).$

Exercise 11. Let *q* be a quadratic form on a R-vector space and let φ be its polarization. Assume φ is nondegenerate, but not definite. Prove that *q* is not of constant sign, *i.e.* there exists $u, v \in E$ with $q(u) < 0$ ans $q(v) > 0$.

Solution of exercise 11. Since $q(u) = {}^t uMu$ is non-degenerate, the eigenvalues of *M* are non-zero, since *q* is non-definite, there are eigenvectors *u* and *v* of opposite sign, say $Mu = \lambda_1 u$ and $Mu = \lambda_2 u$ with $\lambda_1 < 0$ and $\lambda_2 > 0$. So $q(u) < 0$ and $q(u) > 0$. \Box

Exercise 16. Let $\Phi : M_2(\mathbb{R}) \times M_2(\mathbb{R}) \longrightarrow \mathbb{R}$ be defined by

$$
\Phi(A, B) := \frac{1}{2} (\mathrm{Tr}(A) \mathrm{Tr}(B) - \mathrm{Tr}(AB)), (A, B) \in M_2(\mathbb{R}) \times M_2(\mathbb{R}).
$$

- 1. Show Φ is a bilinear symmetric form on $M_2(\mathbb{R})$,
- 2. Determine the matrix of Φ in the canonical basis of $M_2(\mathbb{R})$,
- 3. Prove that *Φ* is non-degenerate,
- 4. Justify why we always have

$$
A^2 - \text{Tr}(A)A + \det(A)I_2 = 0,
$$

- 5. Show that the quadratic form *q* associated with Φ is given by $q(A) = det(A)$,
- 6. Prove that for any $A, B \in M_2(\mathbb{R})$, we have

$$
Tr(A) Tr(B) – Tr(AB) = det(A + B) – det(A) – det(B).
$$

Solution of exercise 16.

- 1. Easy to check. (Using $Tr(AB) = Tr(BA)$)
- 2. Recall that $\mathscr{B} := \{v_1 = E_{11}, v_2 = E_{12}, v_3 = E_{21}, v_4 = E_{22}\}\)$ forms a basis of $M_2(\mathbb{R})$. We compute: $\Phi(v_1, v_1) =$ $\Phi(v_1,v_2) = \Phi(v_1,v_3) = \Phi(v_2,v_2) = \Phi(v_2,v_4) = \Phi(v_3,v_3) = \Phi(v_3,v_4) = \Phi(v_4,v_4) = 0, \Phi(v_1,v_4) = 1/2 = 0$ $-\Phi(v_2, v_3)$. We obtain the rest by symmetry.

$$
\mathscr{M}_{\mathscr{B}}(\Phi) = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}
$$

3. The associated matrix has rank 4, so *Φ* is non-degenerate.

4. If

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},
$$

then we can write

$$
A^{2} - (a+d)A + (ad - bc)I_{2}
$$

= $\begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix} - \begin{pmatrix} a(a+d) & b(a+d) \\ c(a+d) & d(a+d) \end{pmatrix} + (ad - bc)I_{2}$
= $\begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} + (ad - bc)I_{2}$
= $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

5.
$$
q(A) = \Phi(A, A) = \frac{1}{2} (\text{Tr}(A)^2 - \text{Tr}(A^2)) = \frac{1}{2} (\text{Tr}(A)^2 - \text{Tr}(\text{Tr}(A)A - \text{det}(A)I_2)) = \frac{1}{2} (2 \det(A)) = \det(A).
$$

6. We have $q(A + B) - q(A) - q(B) = 2\Phi(A, B)$, while $q(A + B) - q(A) - q(B) = \det(A + B) - \det(A) - \det(B)$, $2\Phi(A, B) = \text{Tr}(A)\text{Tr}(B) - \text{Tr}(AB).$

